
International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 399
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Study and Analysis of different Real Time Task
Scheduling Algorithum

R. D. Ghodeswar Department of Comp. Sci and Engg, P.R.M.T.R. College of Engg. Badnera,Amravati
,E-mail: rdghodeswar24@gmail.com ,

 Asso. Prof.R. R. Tuteja Department of Comp. Sci and Engg, P.R.M.T.R. College of Engg. Badnera,Amravati,
 E-mail: ranu.tuteja@gmail.com,

Abstract— The main objective of real time systems is to complete its task and deliver services on timely basis by choosing an appropritate task sched-
uling algorithum. Here we discussed a brief overview of real time task scheduling algorithum by considering timing factor and functional requirement of
the system.This paper summarizes the state of the real-time field in the areas of scheduling.The paper includes some mostly used scheduling ap-
proaches with example of each, these are: clock-driven approach, weighted round-robin apporach, priority driven approach. The main objective of this
paper is to study and analysis of schedulability of clock driven scheduling algorithum and weighted round robin scheduling algorithums.

Index Terms— Real time system, Basic terms, Real time task scheduling algorithums, Clock Driven Apporach, Weighted Round Robin Apporach,
Priority Driven Apporach Analysis of Schedulability.

—————————— ——————————

1 INTRODUCTION

 eal Time Systems: Real– time systems are the systems in

which both factors are more important logically correct output
as well as timing [1]. The thing that differntiate the real time
system from non real time systems is it’s time constraint, it
means that system should complete task in a given time. Real
time system can be categorised in two main types: Hard Real-
Time System, Firm or Soft Real-Time System. This classifica-
tion is done base on two terms tardiness and deadline of job.
Tardiness is of job measure to check whether job meet its
deadline or not. It is said that tardiness of job is zero if job
completes at or before its deadline otherwise it is difference
between its completion time and its deadline. In soft real time
system tardiness increases while in hard real time system de-
creases may even become negative. Other is deadline if job
misses its deadline then deadline is hard otherwise its timing
constraint is hard. The objective of a real-time task scheduler
is to guarantee the deadline of tasks in the system as much as
possible when we consider soft real-time system. Mostly all
the real-time systems in existence use preemption and multi-
tasking.

2 BASIC TERMS
2.1 Jobs and Task
Job is basic unit of work done (schedule and executed) by the
system. Task is the set of releted job that provide a certain
function of system. .

2.2 Timing Constraints
Relese time:It is a time at which job becomes available for exe-
cution After its relese time job can be schedule and executed at
any time.
Deadline: It is a time within job need to be completed. Job has

no deadline if its deadline is infinity.
Response Time: It is a time duration from relese time of job to
its completion.
Absolute Deadline: It is maximum allowable response time of
a job sometimes it is also called as relative deadline

2.3 Task Precedence
If certain job say J2 depends on another job J1’s execution that
is J2 can begin its execution until J1 is executed this situation is
known as task prcedance. It is said that J1 is predecessor of J2.

2.4 Data Sharing
In an operating system job in a system communicate via

shared data that is data used by both jobs commomly. Like a
job precedance here also problem of dependency arises as both
jobs can not executed at same time. One job has to wait until
other completes its execution to avoide the conflicts.

2.5 Types of Task
Periodic Task: Periodic task are those task which repeats after
certain fix time period. This time period is called as period of
task. Recurrence of task after certain fix time interval is de-
marceted by clock intervals.

Aperiodic Task: Aperiodic task occurs at randon instants.Two
or more periodic task can occur at the same time that is in case
of aperiodic task situation may occur when minimum dura-
tion between occurance of two job will be zero

Sporadic Task: sporadic jobs also occurs at random instants
only the difference in aperiodic and sporadic jobs is that there
is time gap in occurance of two consecutive jobs.

R

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 400
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

3 REAL TIME TASK SCHEDULING ALGORITHMS

Scheduling allocates processors time as well as resources to
jobs ready for execution. In real time task scheduling the time-
ly execution is major issue to be concsidered at the time of
scheduling. We will comment on this as we examine the dif-
ferent scheduling paradigms in the next subsection. In real
time system focused is on deadline of jobs. The main objective
to be achived by the real time schedulars are minimizing total
scheduling time, minimizing tardiness and minimizing num-
ber of tardy jobs.

3.1 CLOCK DRIVEN APPORACH
In this approach real time task scheduling the dicisions on
which time the jobs of task will run are made at specific time
istant. This approach is also known as time driven approach.
In this type of scheduling the scheduling points are determine
by timer interrupts. The parameters of the jobs to be scheduled
by the clock driven schedulars are previously known. Thus
this schedular fix the schedule before the system stars that is
schedule is computed off-line hence these schedulars are also
called as off-line schedulars. This off-line schedule is stored
and used for run time when system starts its execution. As
schedule is previously computed it saves scheduler time of
making scheduling decisions thus overload at run time can be
minimized. The shortcomes of this type of scheduling is that it
can not handle aperiodic and sporadic jobs satisfactorily.
The basic features of two important clock driven scheduler are
discused here.

3.1.1 Table Driven Scheduling
Table driven schedular previously compute which task will
execute at which instant an this information is stored in table
at a time system is designed or configured.The schedular can
make its own schedule at run time for set of task and saved in
application table to be used by scheduler at run time.

3.1.2 Cyclic Schedular
Cyclic scheduler are simple easy and efficient to program. In
cyclic scheduling the scheduling decision are made periodical-
ly rather than at arbitrary times. The scheduling decision are
partition into intervals called frames. Scheduling decision are
made at the beginning of the frame, there is no preemption
within a frame. The performance of this type of schedular
mainly depends on the size of the frame.

3.2 WEIGHTED ROUND ROBIN APPORACH
In round robin scheduling algorithum the ready jobs are exe-
cuted in parts called quantum. All ready jobs are held in circu-
lar queue and schedule one after other in sequence order of
their arrival time. Scheduled job will run for particular quan-
tum. If it is not completed it is again added to the queue.
 In weighed round robin scheduling the the quantum time
that is the time allocated to the task is made veriable depend-
ing on the priority of the task. Thus it assigns higher quantum
time to higher priority task.

 Apart from the simplicity it also maximizes the proper uti-
lization of resources. In many large-scale systems, it is desira-
ble to trade some level of resource utilization for a simple and
fast schedulability test. To achieve this goal, this paper pro-
poses to employ the general framework developed in [5] to
analyze the schedulability bound of the weighted round robin
schedulars. Assigning weight to resources matches many re-
source allocation requirements in practice, i.e. assigning larger
weights to users with greater resource consumption rates.

3.3 PRIORITY DRIVEN SCHEDULING APPORACH
In priority driven scheduling approach scheduling can be im-
plemented by assigning priorities to jobs. A priority driven
algorithum sorts the ready job at each time instants and
schedules the heighest priority job. Hence priority driven al-
gorithum is defined by the list of priorities assign to the job.

3.3.1 Rate Monotonic
Rate monotnic algorithum is important event driven schedul-
ing algorithum and used in practical applications. In rate
monotonic algorithum priorities are assign to the jobs based
on their rate of occurance. Heigher the rate of occurance of job
higher priority is assigned to the job, lower the rate of oc-
curance lower the priority of job.

3.3.2 Deadline Monotonic
This algorithum assigns priorities to jobs according to their
relative deadlines, shorter the relative deadline, the priority is
higher [1].

3.3.3 Earliest Deadline First
The priority of each task is decided based on the value of
its deadline. The task with nearest deadline is given highest
priority and it is selected for execution. This algorithm is
simple and proved to be optimal when the system is
preemptive, under loaded and there is only one processor.

3.3.4 Least Slag Time First
 It assigns priority based on the slack time of a process. Slack
time is the amount of time left after a job if the job was started
now. This algorithm is also known as Least Laxity First. It
imposes the simple constraint that each process on each avail-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 401
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

able processor possesses the same run time, and that individ-
ual processes do not have an affinity to a certain processor.

4 ANALYSIS OF SCHEDULABILITY

4.1 SCHEDULABILITY OF CLOCK DRIVEN SCHEDULARS
In clock driven scheduling to get the best schedulabilty the
following three constraint must be satisfied

Minimizing Context Switching: If task doesn’t complete in
single frame then context swiching occurs as task has to sus-
pend and restart its execution which creates processing over-
load. To avoid this processing overload this constraint is im-
posed.To achive this the frame size should meet the condition
max({ei}) F≤ where F is frame size of task and ei is execution
time of task Ti. This constraint impose lower bound on frame
size.
Minimization of table size: This constraint requires that no. of
entries in schedule table should be minimized in order to min-
imize storage requirement of schedule table. Some time it is
required to divide major cycle in integral parts called minor
cycle this would make size of schedule table large. We can
formulate this constraint as [M/F]=M/F
If floor of M/F equals M/F then major cycle would contain an
integral no. of frames.
Satisfaction of tasks deadline: This constraint defines an up-
per bound on frame size for a task Ti that if there is frame size
larger than defined upper bound then tasks miss their dead-
line .Considering all task frame size must be smaller than

2/)),max(gcd(dipiF +
Where pi and di are period and deadline of task Ti

EXAMPLE 1 A Cyclic scheduler is to be used to run the fol-
lowing set o periodic tasks on uniprocessor: T1 = (e1=1:p1=4) ,
T2 = (e2=1:p2=5) , T3 = (e3=1:p3=20) , t4 = (e4=1:p4=20) . Se;ect
an appropriate frame size
Solution: - for the given set, an appropriate frame size is one
that satisfies all the there required constraints. In the follow-
ing, we determine a suitable frame size F which statisfies all
the three required constraints
Constraint 1. Let F be an appropriate frame size, then max
{ei}≤F . From this constraint we get F≥1.5
Constraint 2. The major cycle M for the given task set is given
by M= LCM (4, 5, 20) = 20 M should be an integral multiple of
the frame size F i.e. M mod F= 0. This consideration implies
that F can take on the values 2,4,5,10,20 frame size of 1 has
been ruled out science it would ommit the constraint 1
Constraint 3. To satisfy this constraint we need to check weth-
er a selected frame size F satisfies the inequality 2F-gcd (F, pi)
≤ di for each pi
 Let us try frame size 2
For F =2 and task T1:
2*2-gcd(2,4) 44 ≡≤ - 2 4≤
Therefore, for p1 the inequality is satisfied
Let us try for F=2 and task T2:

4144)5,2gcd(22 ≤−≡≤−∗
Therefore for p2 inequality is satisfied

Let us try for F = 2and task T3:
202420)20,2gcd(22 ≤−≡≤−∗

Therefor for p3 inequilaty is satisfied
Let us try for F =2 and task T4:

202420)20,2gcd(22 ≤−≡≤−∗
Thus consrain 3 is satisfied by all task for frame size 2 So,
frame size 2 satisfies all the three constraints. Hence 2 is feasi-
ble frame size
Let us try for frame size 4
Let us try for F =4 and task T1:

4484)4,4gcd(42 ≤−≡≤−∗
Therefore for p1 inequality is satisfied
Let us try for F =4 and task T2:

5185)5,4gcd(42 ≤−≡≤−∗
For p2 inequality is not satisfied we need not look further
clearly for F=5 is not suitable frame size
Lets us now try for frame size 10

42204)4,10gcd(102 ≤−≡≤−∗
The inequlity is not satisfied for T1 we need not look any fur-
ther clearly,F=10 is not suitable frame size
For F=20 and task T1, we have

44404)4,20gcd(202 ≤−≡≤−∗
Therefore F=20 is also not suitable.
So, only frame size 2 is suitable for scheduling.
Even though given example successfully find a suitable frame
size that satisfied all three constraints it is quite probable that
suitable frame size may not exist for many problems. In such a
case to find a feasible frame size we might have to spilt the
task(or a few task) that is causing violation of constraint into
smaller subtask that can be scheduled in different frame.

4.2 SCHEDULABILITY OF ROUND ROBIN SCHEDULARS
This portion of paper scedulability of weighted round robin
algorithm is analyzed general methods and methodology used
in []
 The various terms and notation used are given here
T- Task that is to be schedule
Ti-Job in task set T where (i=0, 1, 2……..n)
To characterize the resource demand of task T analytically, we
define f (t), the workload function for T, as follows,
f (t) = the summation of the sizes of all the jobs from T in [0, t].
Similarly, to characterize the actual processor time received by
task T, we define g (t), the service function for T, as follows,
g (t) = the total execution time rendered to jobs of task T dur-
ing [0, t]
 Service Constraint Function: A common alternative to g (t) is
the generalized service constraint introduced in [6], [7], and
[8] (under the name of service curve). G (I) is said to be a gen-
eralized service constraint function if for any t ≥ 0, there ex-
ists I ≤ t that preserves the property
 G (t) ≥ f (t − I) +G (I)
Typically, we assume that G (I) is non-decreasing and G (0) ≥ 0.
means that for any t , we can find I, where 0 ≤ I ≤ t , such that
1) all the jobs released in [0, t − I] have been served, and for
jobs released in [t − I , t], at least G(I) amount of jobs have
been served, as illustrated in Figure 2.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 402
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Figure 2: Components in the Generalized Service Constraint
Function.
Normalized Deadline: To capture the tightness of the task
deadline requirements of different systems, we define the
Normalized deadline ki for Ti as follows:
ki = Di / Si ,
Where Di is the relative deadline of task Ti and Si is the seg-
ment length in the s-shaped workload we follow the conven-
tion that for i = 1, 2, n
i k = k,
k can be viewed as the deadline using S as the measurement
unit, and it characterizes tightness of the deadline require-
ments. The smaller the k, the more difficult it is to schedule the
task. To measure the portion of time consumed in round robin
operations relative to the length of rotation, we define the
overhead ratio α as follows
 α = 𝜏0/𝑇𝑇𝑅𝑇
where 𝜏0 is the overhead constant
 TTRT is the target token rotation time,

To capture the effect of token rotation speed on the schedula-
bility bound, we define the second system parameter normal-
ized token rotation frequency as follows:
 Ƴ = ⌊𝐷𝑚𝑖𝑛/𝑇𝑇𝑅𝑇⌋
 Where 𝐷𝑚𝑖𝑛 = min (𝐷𝐷)
 Di- Relative deadline of job Ti and we assume that
 Dmin ≥ TTRT
γ is the number of rounds the token rotates within a time in-
terval of length Dmin. The larger the γ, the faster the token
rotates.
 To illustrate how the bound result can be used in practi-
cal systems, we introduce the following two examples.
Example 1: Consider a simple real-time robot controller who is
responsible for the routing control of three data sampling ro-
bots, A, B, and C. The three robots are driving at different
speeds and the controller communicates with the robot at a
different frequency, i.e. once every 2.0, 5.0, and 20.0 seconds,
for A, B ,and C, respectively. For the three robots, the control-
ler takes 0.20, 0.30, and 0.60 seconds to finish the route selec-
tion and communication. The route selection and communica-
tion must finish within 4.0, 3.0, and 20.0 seconds for A, B, and
C to avoid robot damages. The controller uses a WRR schedul-
ing discipline with target token rotation time of 2.0 seconds
per round. There is a cost of 0.002 seconds per context switch-
ing (changing the robot to be served). The weights for robots
are assigned in normalized fashion. Now we need to decide
whether the controller can finish all the routing tasks within
their deadlines.
From the above description, we know there are three periodic
tasks Γ = {T1, T2, T3} where

𝐹𝐷(𝐼) = ⌈I/Pi⌉Ci
 C1=0.20 P1=4.0 D1=4.0

C2=0.30 P2=5.0 D1= 3.0
 C3= 0.60 P3=20.0 D3=20.0

For this set of tasks we have α = 0.001, γ = 2, k =1, and μ =1. To
decide whether the task set is schedulable or not, we must
calculate the total system workload rate as follows:

W(1,Γ) = 14.0
20
60.0

5
30.0

4
20.0

3
3

2
2

1
1)(3

1
=++=++=∑

= p
c

p
c

p
c

Di
DiFi

i

Schedulability bound can be calculated as

𝑊∗ (⌈𝐾⌉/𝐾) =),1min(1)1(
11

1 kn ••−•
+ m

α
γ

For this set of tasks we have α = 0.001, γ = 2, k =1, and μ =1. To
decide whether the task set is schedulable or not, we must
calculate the total system workload rate as follows:
By substituting n = 3, α = 0.001, γ = 2, k =1, and μ =1 into (a) we
have a schedulability bound of 0.33 since 0.14<0.33, we con-
clude that task set is schedulable. [6]

5 CONCLUSION
From above discussion we can conclude that clock driven al-
gorithm cyclic schedular are simple efficient and easy to pro-
gram than table driven schedular as timer has to set every
time task is set. For weighted round robin schedulars, the
maximum amount of service every task can receive in each
round is upper-bounded by its allocation. As such, no tasks
can consume more service than what has been assigned.

ACKNOWLEDGMENT
Along the way, development of “Study and analysis of differ-
ent real time task scheduling algorithums” was helped by dis-
cussion with R. R. Tuteja Asso. Prof at Prof. Ram Meghe Insti-
tute of Technology and Research, Badnera. The author would
like to thank to R. R. Tuteja for her helpful comments and dis-
cussion on analysis portion of this paper.

REFERENCES
[1] Jane W.S. Liu, Real-Time Systems , Pearson Education, India,pp. 121 & 26,

2001.
[2] N. Fisher et al., ”The Non-preemptive Scheduling of Periodic Tasks upon

Multiprocessors”, Journal of Real-Time Systems, vol. 32, n. 1-2, pp. 9-20,
2006.

[3] Hyeonjoong Cho, Binoy Ravindran & E. Douglas Jensen “ Optimal Real-
Time Scheduling Algorithm for Multiprocessors “ Proceedings of the 27th
IEEE International Real-Time Systems Symposium (RTSS'06)- 2006U.

[4] C. Devi and J. Anderson. Tardiness bounds forglobal edf scheduling on a
multiprocessor. In IEEE RTSS, 2005.

[5] J. Wu, J.-C. Liu and W. Zhao, “On schedulability bounds of static priority
schedulers,” Proc. 11th IEEE Real-Time and Embedded Technology and
Applications Symposium, San Francisco, CA, Mar, 2005, pp. 529-540.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 403
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

[6] Jianjia Wu, Jyh-Charn Liu, and Wei Zhao Schedulability Bound of
Weighted Round Robin Schedulers for Hard Real-Time Systems

[7] J. Y. Le Boudec and P. Thiran, Network Calculus, a Theory of Deterministic
Queuing Systems for the Internet, New York: Springer-Verlag, 2001.

[8] S. Chang, “On deterministic traffic regulation and service guarantee: a sys-
tematic approach by filtering,” IEEE Trans. Inform. Theory, vol. 44, pp.
1096-1107, Aug. 1998.

[9] Rajib Mall “Real Time Ststem Theory And Practice”,Version 2 IIT Kharag-
pur.

[10] M. Kaladevi and Dr. Sathiyabhama”A Coperative study of scheduling algo-
rithums for real time task” Vol.1, No4,2010.

[11] Krithi Ramamritham and John

IJSER

http://www.ijser.org/

	1 Introduction
	2 Basic Terms
	2.1 Jobs and Task
	2.2 Timing Constraints
	2.3 Task Precedence
	2.4 Data Sharing
	2.5 Types of Task
	Sporadic Task: sporadic jobs also occurs at random instants only the difference in aperiodic and sporadic jobs is that there is time gap in occurance of two consecutive jobs.

	3 Real time task scheduling algorithms
	3.1 Clock driven apporach
	3.2 Weighted round robin apporach
	3.3 Priority driven scheduling apporach
	4 Analysis of Schedulability
	4.1 Schedulability of Clock Driven Schedulars
	4.2 Schedulability of Round Robin Schedulars
	5 Conclusion
	Acknowledgment
	References

